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White Dwarf Stars

▪ The fate of the vast majority of stars 
(including the Sun) is a White Dwarf (WD)

▪ WD stars can serve as cosmic clocks 

• Cooling rate depends on:

• Neutrino production rate in the core

• Thermal conductivity in the core 
and envelope

• Radiative opacity in the 
atmosphere

• Element transport in the interior

• Physics of phase transition

“Surface”“Core”

Physics Reports, 988, 1-63 (2022)
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Transport Coefficients of White Dwarf Stars

White Dwarf Model

Wilhite, H., and Wolf, W. Modeling Diffusion in Accreting White Dwarf Stars, UW Eau Claire, 2021

• Many processes in WD models in the 
partially ionized surface remain 

difficult to model

▪ When diffusion is enabled for this 1D-
WD model, the hydrogen layer is able 

to penetrate further into the star.

• The astrophysics of WD stars is a 
mature field with a wealth of 

observations calling for refined physics 
models
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Equation of State (EOS) of WD Stars

• EOS for matter in the less dense, 
partially ionized surface zone of a 

WD star is not well understood

• Pressures of ∼ 1 Gbar on the 
principal Hugoniot correspond to the 
ionization of the K electronic shells 
of C and O 

Physics Reports, 988, 1-63 (2022)

Recent NIF experiments probing D2O 
EOS motivate our efforts to provide 
precise theoretical estimates of EOS 
and transport properties.

•  Pressure in EOS tables used in white 
dwarf models can differ by 40% in this 
regime
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Ab initio Molecular Dynamics

• We leveraged the LLNL-developed 
KS-DFT code (SPARC) and its 
Spectral Partitioning implementation

• Ab initio simulations of plasmas represent 
the current state-of-the-art for calculating 
EOS and transport properties (but 
computationally intensive)

Sadigh et al., PRE 108, 045204 (2023) 

• Carried out DFT-MD simulations of 
D2O using the PBE XC functional for 
systems of 81 atoms under the NVT 
ensemble
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EOS Properties 

• Our simulations shows a good 
agreement with Livermore EOS (LEOS) 
2027/2017 suggesting that Thomas-
Fermi model is not sufficient for an 
accurate EOS model of D2O

Rankine-Hugoniot Equations
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Hydrodynamic Simulations

Hydrodynamic Simulations of 
Rayleigh-Taylor instability with 
and without plasma viscosity 

and diffusivity show:
- Plasma transport smooths 

flow fields
- Reduces small-scale 

structure
- Reduces instability growth

Transport on

Transport off

Transport on

Transport off

Phys. Plasmas 31, 043905 (2024)

Accurate transport 
coefficient estimates are 

essential
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Transport Coefficient Models

• Warm dense matter 
transport coefficient models 
are fit for strongly coupled 

systems

• MD simulations can provide plasma 
transport coefficients in both weakly and 

strongly coupled regimes
L. Stanek. Computational Methods for Nonideal Plasmas, Michigan State University (2022)

• Transport coefficient 
models estimates have 
shown variation up to 6 

orders of magnitude

P.E. Grabowski, et al. High Energy Density Phys. 37, 100905 (2020)

Hydrogen

Std. of Transport 
coeff. Model 

estimates
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“On the Fly” Machine Learned Interatomic Potentials 
(MLIP’s)

MLIPs were developed ”on-
the-fly” to capture the 

complexity of the system for 
a wide range of conditions 
at varying ionization states

KS-DFT MLFF Framework

The KS-DFT Machine Learned 
Force Fields (MLFF) 

framework has previously 
shown good agreement with 
KS-DFT transport coefficient 

estimates  
DFT DFT DFT

Kumar et al., arXiv.2402.13450
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Interdiffusion 

3.0 g/cm3
3.5 g/cm3

4.5 g/cm34.0 g/cm3

Atomic scale mixing between species is 
described through terms that contains the 

inter-diffusion coefficient D12 :

For all sampled temperatures and 
densities, the SPDFT results were in 
the best agreement with the Stanton 

Murillo transport model 
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Viscosity

3.0 g/cm3 3.5 g/cm3

4.5 g/cm34.0 g/cm3
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The shear viscosity can be calculated by 
integrating the shear stress 

autocorrelation function:

As density increases the difference 
between the viscosity predictions of 

the transport models and SPDFT 
grows to one order of magnitude
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Conclusions

• Determine source for large discrepancies in 
viscosity between transport coefficient models and 
KS-DFT

• Determine the impact of small and large 
discrepancies in transport coefficients on the results 
of hydrodynamic simulations for various applications 

• LEOS tables (that account for shell 
structure) accurately reproduce KS-
DFT predicted EOS properties for 
D2O

• Transport coefficient models 
accurately reproduce interdiffusion 
coefficients but show large deviation 
in viscosity

Future Work 

• Our work showcases the capabilities 
of SPARC to efficiently sample EOS 
and transport properties of a system 
at White Dwarf relevant conditions
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