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White Dwarf Stars

= The fate of the vast majority of stars
(including the Sun) is a White Dwarf (WD)
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= WD stars can serve as cosmic clocks
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Transport Coefficients of White Dwarf Stars
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Wilhite, H., and Wolf, W. Modeling Diffusion in Accreting White Dwarf Stars, UW Eau Claire, 2021

« The astrophysics of WD stars is a
mature field with a wealth of
observations calling for refined physics
models

- Many processes in WD models in the
partially ionized surface remain
difficult to model

= When diffusion is enabled for this 1D-
WD model, the hydrogen layer is able
to penetrate further into the star.

LLNL-PRE S-xxxxxx

Lawrence Livermore National Laboratory
LLNL-CFPRES-2008604

NYSE -



Equation of State (EOS) of WD Stars

« EOS for matter in the less dense, .
partially ionized surface zone of a 168
WD star is not well understood |
10°f C/O core
* Pressures of ~ 1 Gbar on the 4 /O envelope
principal Hugoniot correspond to the ™|
ionization of the K electronic shells o0 |
S Diamond Hugoniot
of Cand O S =7
: 107 Oy Hugoniot
» Pressure in EOS tables used in white % |
dwarf models can differ by 40% in this &
regime 107} Convective zone
. . 1076}
Recent N_IF experiments problng_DZO WD sucface
EOS motivate our efforts to provide 108 2 s o s
precise theoretical estimates of EOS Temperature (K)
and transport properties. Density o (afem?)
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Ab initio Molecular Dynamics

* Ab initio simulations of plasmas represent .

10
the current state-of-the-art for calculating

EOS and transport properties (but
computationally intensive)

-
o

.
We leveraged the LLNL-developed S 0
KS-DFT code (SPARC) and its §
Spectral Partitioning implementation
10
Carried out DFT-MD simulations of
D,0 using the PBE XC functional for 10

systems of 81 atoms under the NVT
ensemble
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EOS Properties
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Hydrodynamic Simulations

Hydrodynamic Simulations of =4
Rayleigh-Taylor instability with 3
and without plasma viscosity = 2

and diffusivity show: 1, .‘—
- Plasma transport smooths 5o .1

flow fields X-microns

- Reduces small-scale w4
structure '

- Reduces instability growth
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Accurate transport
coefficient estimates are
essential
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Transport Coefficient Models
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« Warm dense matter
transport coefficient models
are fit for strongly coupled
systems

« Transport coefficient
models estimates have
shown variation up to 6

orders of magnitude
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length scale
 MD simulations can provide plasma
transport coefficients in both weakly and
strongly coupled regimes

L. Stanek. Computational Methods for Nonideal Plasmas, Michigan State University (2022)
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“On the Fly” Machine Learned Interatomic Potentials
(MLIP’s)

KS-DFT MLFF Framework
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Interdiffusion

Inter diffusion coefficient (cm?/s)
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— . Atomic scale mixing between species is

CBF

—+ sorr described through terms that contains the
inter-diffusion coefficient Dy, :

Dix = g [ G®)-J(0))dt
i) =x2 ) vii(t) —x Z v i(t)

For all sampled temperatures and
densities, the SPDFT results were in
the best agreement with the Stanton

Murillo transport model

Lawrence Livermore National Laboratory
LLNL-PRE S-XXXXXX LLNL-CFPRES-2008604

NYSH o

urity Admir



Viscosity

Shear Viscosity D,0 (Pa-s)
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The shear viscosity can be calculated by

Integrating the shear stress
autocorrelation function:

o 5
V !/ !/
n= 5kBTJ0 dt iil(ai(o) - a(t))

(011 — 022) (022 — 033)
2 ’ 2

I __
g = [012,023,031,

As density increases the difference
between the viscosity predictions of
the transport models and SPDFT
grows to one order of magnitude
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Conclusions Future Work

- Our work showcases the capabilites * Determine source for large discrepancies in
of SPARC to efficiently sample EOS viscosity between transport coefficient models and

and transport properties of a system KS-DFT
at White Dwarf relevant conditions

« Determine the impact of small and large
. LEOS tables (that account for shell discrepancies in transport coefficients on the results
of hydrodynamic simulations for various applications

structure) accurately reproduce KS-
DFT predicted EOS properties for
D,O

* Transport coefficient models
accurately reproduce interdiffusion
coefficients but show large deviation
In viscosity
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