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Classic Coulomb Interaction
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Same charged particles,
different interaction
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: ASP)
Same charged particles, QM

different interaction
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Classical Charged Systems

* Want to examine behavior in a system of many
interacting particles

» Key is to understand how all the other particles in the
system affect the interaction between two particles
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Areas of interest

» Particle diffusion / transport
> \Waves
> Shocks
° |Instabilities

e Heat diffusion
> Energy loss in plasmas
> Thermalization

* Viscosity
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Svante Arrhenius

* 1903 Nobel Prize: salts disassociate into paired
charged particles (ions) when dissolved

* Since the electrolyte solution is charge neutral
and the ions are uniformly distributed, the
average force acting on each particle is null

» But electrostatic interactions are important to
describe strong electrolytes

Tamashiro, Levin, & Barbosa, Physica A, 268, 24-49 (1999)
% ‘ Baylor University
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Debye — Huckel Theory 1923

Images from Wikipedia, public domain

* Explain departures from ©
ideality in electrolytic - @ é
solutions and plasmas - @®D ° o

* Each ion is closely surrounded ° @) © ® °
by ions of opposite charge @ @

Peter Debye
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Strongly Coupled Coulomb Systems

» Describe system behavior when the potential energy is
greater than or equal to the thermal energy

qZ
' =
47T60aWSkBT

> 1

» Strongly coupled systems: potential varies from Debye-Huckel
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Simplest System:
One Component Plasma (OCP)

* Model system for strongly coupled atomic plasmas
* N identical particles

* Neutralizing background
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Simplest System: %

One Component Plasma (OCP)

S oo T » Equation of state
L T o Collective modes
g e Transport properties

* Viscosity
* Energy deposition
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Early Applications of OCP
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Early Applications of OC

I , | : Predicted phase transition for ' = 168
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F16. 5. Radial distribution functions g(x) for 0.05<T <100.0. FIG. 1. Pair distribution functions for the liquid
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Brush, Sahlin, Teller, ] Chemical Physics 45,2102-21 18 (1966) (dashed curve) and the solid (solid curve) for
Slattery, Doolen, DeWitt Phys Rev A 21(6), 2087 (1980)
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Current applications of OCP

» Modifications of Debye-Hlickel interaction potential
» Molecular gases
» Anisotropies in density, velocity, temperature
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Bremsstrahlung Radiation

in the Strongly Coupled Limit

* Binary collisions modeled via the
“potential of mean force”
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Baalrud and Daligault, Phys. Plasmas 26,082106 (2019)
» Potential of mean force:

(N) (41
wh(r™) = —kyTin [p - )]
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Effect of molecular ions 6/

 Rigid rotor OCP (ROCP): neutral 102
atom bonded to an ion |

-
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—
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» Bulk viscosity of OCP is small
compared to shear viscosity
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* For a rigid rotor one component
plasma (ROCP), the bulk viscosity

Reduced Viscosity
— it
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orders of magnitude 1 5 10 20 50 100

Coulomb Coupling Parameter I'

* Include bulk viscosity in fluid
simulations of turbulence, shock

waves, instabilities Jarett Levan, Monday 9:30 am
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M a g n et I Zat I O n Jose,Welch, Tharp, and Baalrud, Phys Rev E |11,035201 (2025)

(a)
1.5 fso 0.200

e Differences in relaxation times in o150
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* Introduces anisotropies in temperature
and velocity distributions
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» Affects screening factors and collisions
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Dusty Plasmas

» Useful analog for atomic systems
» Dust is easily imaged

* Dynamics tracked at molecular level
» Self organization and stability
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lon Wakes

flowing . .

» Accumulation of R MO
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Interacting wakes
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Dust and Wake Potential: 2 Dust Grains

¢total [V]
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Physics of £ Publishing
MENNER

Vol. 31, Iss. 7, Jul. 2024

Interacting dust grains in complex plasmas:
lon wake formation and the electric potential
K. Vermillion, R. Banka, A. Mendoza, B. Wyatt, L. Matthews, and T. Hyde
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Electric Potential of Dust + Wake
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Electric Potential of Dust + Wake
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Diana Jimenez, Thursday poster
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Comparison of Results
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Comparison of Results
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Comparison of Results
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In C'M

“Natural” Dusty plasmas

» Aggregate, irregular grains
» Charge dipole

* Modified wakes

» Altered transport

292

By | Baylor University Benny Saenz, Thursday poster .



Back to Chemistry:

Colloidal Particles in Electrolyte Solutions

» Stability of colloidal particles in
solution depends on surface ¢
charge

e

* which in turn depends on pH and
salt concentration.

» Complex systems require .

(. ¢ (™)
comp utational a pproac h Fig. 2 A colloidal particle inside the simulation cell. The blue sites are

protonated. The gray spheres are the hydronium ions. The arrows indicate
protonation/deprotonation moves.

Bakhshandeh & Levin, Phys. Chem. Chem. Phys., 2023, 25, 32800-32806

%‘BaylorUniversity Yan Levin,Tuesday, 2:40 pm 28



Back to Chemistry: %

Colloidal Particles in Electrolyte Solutions
» Potential of colloidal particle

()
o N 4nq |k| -
§ E -— +ik-(r—r

. Z Z ; erfc(xe|r — v/ — Ln|) ¢

€w|r — 1 - Ln|

. _
+ =3 py(k) exp [ik- 1], ¥ 9 ¢ ®
V k=0 Fig. 2 A colloidal particle inside the simulation cell. The blue sites are

protonated. The gray spheres are the hydronium ions. The arrows indicate
protonation/deprotonation moves.

Bakhshandeh & Levin, Phys. Chem. Chem. Phys., 2023, 25, 32800-32806

Long + Short range interactions

Neutralizing background

%‘BaylorUniversity Yan Levin,Tuesday, 2:40 pm 29
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Distribution of positive and negative ions near
colloidal particle o Foiieion

o Negative ions
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Figure 5. Comparison of ionic density profile for pH 4 and 6 of a colloidal particle with 600 active sites with K, = 1/K =3.95 X 107 M and radius 80 A,
the concentration of 1:1 salt is 300 mM. Symbols are simulation results and solid curve is the theory.
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Computational Model

» Each colloidal particle is modeled inside a
Wigner-Seitz (WS) cell

* Infinite replication of WS cells to determine
long-range electrostatic interaction

» Adding a proton (changes the pH) adds an
infinite number of charges — thus the need
for the neutralizing background.

* Inserted proton experiences a jump in
potential energy (Bethe potential) which
changes the pH calculation.

% ‘ Baylor University
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FIG. 2. Periodically replicated system separated from the reservoir by a semi-
permeable membrane: the electrostatic potential difference between the two is

$g + @p-

Levin & Bakhshandeh, J. Chem. Phys. [59, 1 1101 (2023)
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Computational Model

» Bethe potential - average of the local
electrostatic potential inside the periodically
replicated crystal

* Donnan potential is the potential drop between
the system and the reservoir

% ‘ Baylor University
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FIG. 2. Periodically replicated system separated from the reservoir by a semi-
permeable membrane: the electrostatic potential difference between the two is

¢ + ¢p-

Levin & Bakhshandeh, J. Chem. Phys. [59, 1 1101 (2023)
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* Track motion of ions and

* Quantum dynamic response
of electrons

* Density Functional Theory

* Many body effects

* Temperature dependence

By | Baylor University Valentin Karasiev, Tuesday, 3:55 pm

Stephanie Hansen, Tuesday, 4:30 pm
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Conclusions

» Challenges remain for classic charged systems!
» Anisotropic shielding

» Anisotropies in distributions

* Multi-components

o Chemistry
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Dust Structures

Camera with
microscopelens
Dust shaker
Upper electrode |
Camera with
microscopelens z
T—L> .
K

X
/; Glass box %

Lower electrode ") 13.56 MHz

Laser
Figure 3 from T. Hyde, J. Kong, L. Matthews (2013) “Helical
structures in vertically alighed dust particle chains in a complex . . . .
Yo b P Animated gif showing six dust

plasma” doi: 10.1103/PhysRevE.87.053106
grams trans:tlonmg from a
zig-zag to a linear chain and
back.
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Goal: One-Component Model for
Charged Dust Interactions

Bt
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Colored spheres: dust B.2¢
Gray cloud: point ion-wake !
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Animated gif of a simulation
of four dust grains with point-
wakes transitioning from a
double chain to a single linear
chain as the radial
confinement is increased. The
point wake charges and
positions are adjusted as dust
grains align in the ion flow
direction.
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Challenges

» Large difference in time scales, distance scales

» diagnostics

% ‘ Baylor University 37



Interaction of particles and their surroundings determine
stability and structure

Easy to imagine for a building — solid objects which are
physically touching. Truss —the components of the truss
act the same whether the truss is in air or in water, if it is
raining (and hopefully) if the wind is blowing.

What about when the interaction force is Coulombic —
particles are not touching? What about when the
strength of this interaction depends on conditions in the
surrounding medium?

By | Baylor Unjveptyic has effects on static structures as well as fluid flow



Current topics in dusty plasmas

» Model systems for condensed matter phenomena
> Phase transitions, lattice formation, density waves

» Dust contamination control in plasma processes
> Extreme UV lithography, ultra-clean industrial processes

* Magnetic fusion research

» lonospheric and space dusty plasmas: heliosphere,
space-debris, lunar dust, planetary debris disks

* Atmospheric pressure plasmas with aerosols
> Synthesis of nanoparticles, nitrogen fixation, deactivation of

pathogens
% ‘ Baylor University 39
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» Chaotic dynamics governs the thermalization of the
world (existence of heat) — Linda Reichl
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Main features of dusty plasmas

» Charged dust
> OML theory works great, until it doesn’t
> Theory doesn’t take into account plasma screening
> Electron emission, electron screening
* Plasma screening
o Effect on charging

* Anisotropic screening in ion flows

* lon drag force
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Conclusions

* New model of ion wake

» Takes into account variations due to the spatial
configuration of dust

 Eliminates the singularity in the point-wake model of the
ion wake.
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